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 Section 1 Introduction

It is likely that NASA’s future spacecraft systems will consist of distributed
processes which will handle dynamically varying workloads in response to perceived
scientific events, spacecraft environments, spacecraft anomalies and user commands.
Since these various states can not be determined prior to deployment, a method to
dynamically adapt the system to handle the dynamic conditions was needed. To address
this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable
reconfigurable ground and space information systems.  This approach embodies a set of
middleware for adapting resource allocations, and a framework for reasoning about real-
time performance of distributed application systems.  We are integrating the
DeSiDeRaTa adaptive resource management system with a ground-based testbed called
ITOS, Integrated Test and Operations System, that will enable NASA to perform early
evaluation of adaptive resource management techniques without the expense of deploying
the systems in space.

NASA is evolving the Principal Investigator’s DARPA-funded DeSiDeRaTa adaptive
resource management approach to enable reconfigurable real-time ground and space
information systems.  The benefits of the effort are numerous, including the ability to use
sensors in new ways not anticipated at design time; the production of information
technology that ties intra-constellation networks together; the accommodation of greater
numbers of missions with fewer resources. For a comparison of DeSiDeRaTa to related
work see Section 2.1. As detailed in Section 2.2, DeSiDeRaTa embodies a set of
middleware mechanisms for adapting resource allocations, and a framework for
reasoning about the real-time performance of distributed application systems. Section 2.2
also describes how the framework and middleware are being extended to accommodate
the dynamic aspects of intra-constellation network topologies, and the complete real-time
path from the instrument to the user. Our plans for assessment and prototyping of our
approach for ITOS are described in Section 2.3.  The first step of the plan, modeling of
the ITOS system, is detailed in Section 2.4, describing the process used as well as an
explanation of the ITOS path model (Figure 3).
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2.1 Background and previous work in this problem area

The majority of real-time computing research has focused on the scheduling and
analysis of real-time systems whose timing properties and execution behavior are known
a priori (i.e., their derivation is based, in part, on theory instead of on experience or on
experiment). However, there are numerous applications that must execute in highly
dynamic environments (such as Earth and Space Science Missions), thereby precluding
accurate characterization of the applications’ properties by static models. In such
contexts, temporal and execution characteristics can only be determined accurately by
empirical observation or experience (i.e., a posteriori).

In most real-time computing models, the execution time of a “job” is used to
characterize workload a priori as an integer “worst-case” execution time (WCET) [9, 16,
11, 3].  While [11] establishes the utility of WCET-based approaches by listing their
domains of successful application, others [8, 6, 5, 7, 14, 15, 13, 12, 10, 1, 2, 4] cite the
drawbacks, and in some cases the inapplicability, of the approaches in certain domains.
In [15, 8, 5, 1] it is mentioned that characterizing workloads of real-time systems using a
priori worst-case execution times can lead to poor resource utilization, particularly when
the difference between WCET and normal execution time is large.  Furthermore, it is
stated in [12, 1] that accurately measuring WCET is often difficult and sometimes
impossible.

DeSiDeRaTa project [17] is addressing these shortcomings. One of the fundamental
innovations of the DeSiDeRaTa project is the dynamic path paradigm, which is employed
for modeling and resource management of large-grain, distributed real-time mission-
critical systems. The approach was experimentally validated on a benchmark system, and
within an experimental Navy distributed computing system. Experimental results show
the effectiveness of the approach for specification of real-time Quality of Service (QoS),
detection and diagnosis of QoS failures, and restoration of acceptable QoS via
reallocation of distributed computer and network resources.

2.2 The Adaptive Resource Management Approach

To support The Earth Science Vision and ITOS, NASA is evolving the DeSiDeRaTa
adaptive resource management approach to control all essential processes and to
coordinate the data flow through ITOS. This section describes the DeSiDeRaTa approach
for managing distributed computing and network resources in order to meet the real-time
performance goals of mission-critical systems. It also describes how we are extending the
approach to accommodate the dynamic aspects of intra-constellation network topologies,
and the complete real-time path from the instrument to the user.

The DeSiDeRaTa project is producing technology to enable the engineering of the
emerging generation of distributed real-time systems.  Such systems have rigorous QoS
objectives. They must behave in a dependable manner, respond to important events in a
timely fashion and provide continuous availability within harsh environments.
Furthermore, resources should be utilized in an efficient manner, and scalability must be
provided to address the ever-increasing complexity of scenarios that confront such
systems. To provide the desired QoS in such a context, efforts are focusing on the
following aspects: i) QoS specification, ii) QoS metrics, iii) dynamic QoS management,
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and iv) benchmarking. The project is called DeSiDeRaTa, for its applicability to
Dynamic, Scalable, Dependable, Real- Time systems.

The DeSiDeRaTa project is providing innovative QoS management technology that
incorporates knowledge of needs in the distributed real-time mission-critical systems
domain.  The techno logy includes a specification language and dynamic QoS
management software that support dynamic, path-based systems. Additionally, domain
knowledge is being used to produce a dynamic real-time mission-critical benchmark
suite.

DeSiDeRaTa technology supports the dynamic path concept for automated QoS
assessment and resource allocation.  A dynamic path is a very large-gain entity, which
typically consists of sensors, actuators, and control software for filtering, evaluating, and
acting.  The paths may have timing constraints, may have widely varying dynamic
behavior, and may be scalable and fault tolerant.  A generic path design pattern contains:
(1) a data source and/or an event source, (2) a data (and/or event) stream and (3) a data
(and/or event) consumer. The data/event source produces a stream of data/events, which
cause the consumer to perform processing. A data/event source is typically one or more
sensors, but may also be a clock or a software entity. A consumer often contains one or
more actuators. Each datum or event is evaluated by a data consumer, to decide whether
the actuators should perform actions.

Path-level QoS specification is used by the adaptive resource allocator to determine if
the current configuration is achieving the desired QoS and to assist in selecting new
configurations to improve QoS.  This is significantly different than other approaches to
assessment in the sense that it is performed dynamically, and is performed at a much
larger granularity. Moreover, DeSiDeRaTa differs from previous work in that it accounts
for the complex features of dynamic real-time systems. These features include previously
overlooked issues with respect to granularity, variable periods, sporadic processes,
priorities, fault management and scalability.

The logical architecture of the DeSiDeRaTa QoS management software is shown in
Figure 1. It behaves as follows. The application programs of real-time control paths send
time-stamped events to the QoS metrics component, which calculates path-level QoS
metrics and sends them to the QoS monitor. The monitor checks for conformance of
observed QoS to required QoS, and notifies the QoS diagnosis component when a QoS
violation occurs. The diagnoser notifies the action selection component of the cause(s) of
poor QoS and recommends actions (e.g., move a program to a different host or LAN,
shed a program, or replicate a program) to improve QoS. Action selection ranks the
recommended actions, identifies redundant actions, and forwards the results to the
allocation analysis component; this component consults resource discovery for host and
LAN load index metrics, and determines an efficient method for allocating the hardware
resources to perform the actions, and requests that the actions be performed by the
allocation enactment component.
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Figure 1. Logical architecture of the resource and QoS management software.

The dynamic path paradigm is ideal for modeling the complete real-time path from the
instrument to the user. Current DeSiDeRaTa resource management strategies assume that
each path can have a variable workload – the number of data stream elements and the
event arrival rate can vary. Both of which reflect features of the constellations of the
future. However, other types of variability cannot be modeled at present. Thus, NASA is
generalizing the adaptive resource management approach to accommodate dynamic
numbers of data streams and dynamic types of data stream elements.

DeSiDeRaTa’s model of computing and network resources also provides a solid basis
for management of space-based information systems. It can represent static resource
features (such as the speed of a CPU), and static network topologies. Additionally, it has
sophisticated metrics for dynamic resource load indexes that are applicable in
heterogeneous resource environments.

Currently, we are collaborating with the Resource Monitoring System (Remos) team
at Carnegie Mellon University to adapt their network monitoring software to our resource
management needs. Remos provides a query-based interface that will allow DeSiDeRaTa
to assess the topology of the network resources and their available capacity. Once
network monitoring using Remos is integrated, the resource manager will be extended to
incorporate network metrics into the QoS monitoring, diagnosis, action selection, and
allocation enactment component - allowing DeSiDeRaTa complete control of all aspects
of a real-time path.

2.3 Prototyping a reconfigurable computing strategy for NASA’s Integrated Test
and Operations System (ITOS)

We are demonstrating the feasibility of adaptive resource management for a ground-
based system currently used by several NASA satellite systems. We are showing the
applicability of our approach for dynamically managing the information systems of
satellites. Moreover, we are providing a ground-based testbed that is enabling NASA to
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perform early evaluation of constellation management techniques without the expense of
first deploying them in space.

The effectiveness of adaptive resource management is being demonstrated in a ground
based real-time system called ITOS. ITOS, the Integrated Test and Operations System, is
a suite of software developed by a group in the Real-time Software Engineering Branch
at the Goddard Space Flight Center for control of spacecraft and spacecraft components
during development, test, and on-orbit operations. Figure 2 depicts a typical ITOS data
system configuration for spacecraft integration and test (I&T) or on-orbit operations. In
the future, some portion of this configuration will likely be contained within an
autonomous constellation of satellites.

Figure 2.  ITOS for Spacecraft Integration/ On-Orbit Operations

The ITOS configuration consists of a cluster of workstations interconnected over a
local area network.  Each workstation runs the complete ITOS software, with one
designated as the primary operator console.  This console receives telemetry data and
sends commands to and from the spacecraft interface over an IP Ethernet connection. The
primary console feeds the telemetry data it receives from the spacecraft interface to all
other ITOS workstations.  Each ITOS workstation unpacks the telemetry packets and
performs data processing tasks such as limit checking, engineering unit conversions, and
configuration monitoring.  ITOS has an event subsystem, which recognizes spacecraft
events, logs them, and forwards them to operators or external programs for processing.
In addition, the primary ITOS console can distribute telemetry data via an IP Ethernet to
other systems attached to the local area network; for example, the Science Processing
Facility, Command Management System, Flight Dynamics System, and Mission Planning
System. This approach is analogous with the one to be taken within space-based sensor
webs.

Typically, ITOS installations in mission operations or I&T are set up on private

- or -

SPACECRAFT INTERFACE

SPACECRAFT

ELECTRICAL GSE

GROUND STATION

ITOS
OPERATOR
CONSOLE

ITOS
GATEWAY

ITOS
WORKSTATIONS

SCIENCE
PROCESSING
FACILITY

MISSION
PLANNING COMMAND

MGMT
FLIGHT
DYNAMICS

WWW



Pfarr 6 D2

networks.  One ITOS computer will, however, be connected to the Internet as a server for
ITOS’s Java-language, web-based telemetry and event displays.

ITOS was a good candidate for adaptive resource management. First, the workload of
an ITOS-based system is environment-dependent, and thus varies at run-time in several
ways, including:

• The telemetry data rate varies
• The number and types of displays vary
• The number of telemetry streams varies
• The types of elements within a particular telemetry stream varies
• The number of workstations being served with telemetry data varies
Another reason that ITOS was a good candidate is that it has the ability to be

dynamically adapted to handle varying workloads via utilization of a pool of distributed
computing resources.  However, the most compelling reason NASA decided to apply
adaptive resource management to ITOS was because it provides significant risk
mitigation for the Earth Science Vision.

To show proof-of-concept, the resource management approach described in Section
2.2 is being applied to ITOS. This application of the approach to ITOS is being
performed in the following steps:

1. Model the sensors, actuators, applications, and communication relationships within
ITOS

2. Construct a model of the dynamic real-time paths of ITOS (Section 2.4)
3. Identify fault tolerance requirements
4. Insert probes into ITOS applications (e.g., for events & resource usage)
5. Specify the above properties in D-Spec (the DeSiDeRaTa QoS specification

language)
6. Obtain resource usage profiles for the ITOS applications and paths
7. Make applications scaleable & fault tolerant
8. Deploy adaptive resource management for the application system

The effectiveness of the resource management approach for ITOS will be determined
via extensive experimentation. The components of ITOS will be distributed over a
collection of computers, and Network Time Protocol (NTP) will be used to provide
global time. Dynamic scenarios will be run and real-time QoS will be recorded. The
scenarios will be challenging enough to force resource reallocations. Collecting several
assessment metrics that we have developed will assess the quality of the adaptive
resource management strategy. Ideally, QoS will be improved with each reallocation
action. Thus, we will measure the absolute and percentage improvement in QoS per
reallocation action. Other metrics that we will gather are (1) QoS violation rate (QVR) –
the number of QoS violations per unit of time, (2) the sensitivity of chosen allocations to
increased load, and the time to perform resource reallocations.

2.4 ITOS Model and Path Behavior

Our first step in modeling ITOS was to define the actuators, sensors, applications,
and communication relationships within ITOS.    We determined the data and loads vary
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depending on the spacecraft I/O data rate, types and number of displays, types of
commands, and the number of event messages generated.  Since these characteristics only
effected the telemetry, command, and event systems we decided to make these our
critical paths.  It was determined that each path had a sensor that received data, sending it
to the components, or applications, in the path for processing, then sending data to the
path actuator for action.  We defined the sensors and actuators in each path as follows:

Sensor Actuator
Telemetry Spacecraft STOL, Displays, fop
Command STOL Spacecraft

Event ITOS components dsp_evtdsp , evt_forward,
dsp_evtlog

The communication relationships between the applications, sensors, and actuators can be
seen in Figure 3.

After studying the sensors, actuators, applications, and communication
relationships within ITOS, we constructed a model of the dynamic real-time paths of
ITOS.  In evaluating the components and subsystems within ITOS we were able to break
ITOS into four systems and two subsystems.

ITOS includes the event, telemetry, command, and STOL systems.  The event
system is used for the logging of every action done in the ITOS system.  This log is
generated in both a display window, for the operators reference, as well as in a file format
that can be accessed for future reference.  The telemetry system is utilized whenever data,
of various types, is received from the space system, or any other system under ITOS
control.  It takes care of receiving the frames from the spacecraft, unpacking the frames
into packets, unpacking the packets into useful data, and installing the data into the
database where it can be accessed by mnemonic variable names by various ITOS
applications.   The command system controls the sending of various data and commands
to the spacecraft as well as verification of command receipt.  It creates the frames from
packets, sequences the frames, sends the command to the external destination, and
performs closed-loop command verification, in accordance with the CCSDS COP-1
protocol, to ensure the spacecraft has received the commands.  The STOL, Spacecraft
Test and Operations Language, system is the backbone of the ITOS system, used to
control the configuration and execution of all ITOS systems.  For non-trivial spacecraft
operations, multiple STOL directives are combined to create a procedure that can be
executed by the STOL system.

We have delineated two subsystems in ITOS, display and frame_sorter, which
make up part of the telemetry system.  The display subsystem consists of sequential
prints, plots, configuration monitors, and a server that enables access to ITOS telemetry
values through a network.  The frame_sorter subsystem extracts CCSDS packets from a
stream of CCSDS frames.  This subsystem also has the capability to handle TDM frames,
CCSDS packets, as well as other data formats.  The normal CCSDS frames to CCSDS
packet operation is first done by sorting the frames into virtual channels (VC's).  The
frame_sorter then manipulates the VC's, separating them into their respective data
packets.  The packets are then output to enable use by the telemetry system as needed.
The frame_sorter is also the device used to archive all of the data.  This archiving can be
done both in frame and packet formats, to be used for later reference.
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When integrated together and connected with data and communication paths, we
get the general ITOS system model, as shown in figure 3.  These paths show the data and
communication flow between each component of ITOS. The subsystems and systems
include the following components (in the order of normal flow):

• Frame_sorter subsystem:  frame_input, vc_sorter, pkt_extract, archive, output
• Display subsystem: ODB, dsp_mnepage, dsp_seqprt, dsp_plot,

eqn_cfgmon, dp_server
• Telemetry system: frame_sorter subsystem, tlm_client, ODB, display

subsystem
• Command system: stol, cmd_load, ODB, fop_mux, fop, cmd_transmit
• STOL system: stol_fifo, stol_wkp, stol, stol_i/f, ODB
• Event system: event_fifo, dsp_event, dsp_evtlog, dsp_evtdsp,

evt_forward
To enable control of these systems, the behavior of the three paths, telemetry,

command, and event, needed to be determined.  The flow of data, path activation, and
size of data behaviors needed to be specified. Data in ITOS is only generated after an
event occurs; once the event occurs the flow is continuous.  Therefore the behavior of the
data flow was neither continuous nor transient, but quasi-continuous.  The event that
activates the data flow was found to be a STOL command while the data is dynamic,
since each mnemonic, event message, and command varies in size.

Figure 3. Path model of ITOS
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Section 3 Conclusions and Future Work

This paper has presented the concept of DeSiDeRaTa's adaptive resource management
approach and it's applications in spacecraft applications.  Since NASA's future spacecraft
will work in dynamic environments and with dynamic workloads, we are evolving the
resource management approach to accommodate these characteristics in an initial test-
bed: ITOS.  The dynamic and distributed attributes of ITOS are being met by
DeSiDeRaTa's use of a set of middleware for adapting resource allocations, and a
framework for reasoning about the real-time performance of distributed application
systems.

While the majority of real-time computing research has focused on the scheduling and
analysis of real-time systems who's timing properties and execution behavior are known
a priori (section 2.1), the DeSiDeRaTa resource management approach focuses on
applications that must execute in highly dynamic environments.  One of the fundamental
ways we achieve this is by the innovation of the dynamic path paradigm (section 2.2).
The project is producing technology to enable the engineering systems containing
rigorous QoS objectives such as dependability, timely event response, unlimited
continuous availability, efficient resource utilization, and scalability.

The use of ITOS as the initial test-bed for dynamic spacecraft systems and the
adaptive resource management approach was inherent since its workload is environment-
dependent and varies at run-time in several ways (section 2.3).  Another reason that ITOS
was a good candidate is for its ability to dynamically adapt to handle varying workloads
with the use of a distributed computing resource pool.

The first step of integrating the resource manager with ITOS was described (section
2.4) and we are continuing with the remaining steps.  The ITOS fault tolerance
requirements will be determined, probes will be inserted, spec files will be written, usage
profiles will be defined, and applications will be made scaleable as well as fault tolerant.
Once completed, the DeSiDeRaTa controlled ITOS will go through extensive
experimentation to determine the adaptive resource management approach's
effectiveness, therefore allowing NASA to perform early evaluation of dynamic systems
without the expense of deploying spacecraft.
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